
Exploiting Other
Enterprises' Web

Services
Léon Brocard

YAPC::Taipei 2005

Abstract

Web Services are the next wave of enterprise
development. Large companies such as Google,
Amazon and Yahoo! are solving the challenges of
developing, deploying, and supporting complex
services in the face of interoperability and
scalability challenges. Seeing as they've gone to all
this trouble, it's only fair to present how we can
exploit all this hard work using a few lines of Perl.

Web Services are the next wave of enterprise
development. Large companies such as Google,
Amazon and Yahoo! are solving the challenges of
developing, deploying, and supporting complex
services in the face of interoperability and
scalability challenges. Seeing as they've gone to all
this trouble, it's only fair to present how we can
exploit all this hard work using a few lines of Perl.

Abstract

Web service?

• Web services are loosely-coupled software
components delivered over standard
internet technologies

• Intended for use by programs

• Scraping is not a (really) web service

Enterprise?

• An enterprise is an organisation that uses
computers, but usually a large organisation

• We’ll concentrate on enterprise web
services for reliability

Exploit?

• Use or manipulate to one's advantage

• In this case, for my website

Perl?

• You probably know about Perl already

• A dynamic programming language

• Often used to glue libraries together

• Handy for web services

• CPAN saves the day

Types of web service

• SOAP

• W3C standard, evil specification

• Intended for static languages, seems
overkill for Perl

• REST

• HTTP+XML

• Simpler than SOAP, but wheel reinvention

Are you the
Keymaster?

• Some web services are open

• Most enterprise web services require you
to sign up to receive a key, which you hand
over upon every request

Web services

Google

• Search Requests

• Cache Requests

• Spelling Requests

• All sorts of scrape-able data too

Google limits

• 1,000 queries per day

Google search

• I have 100k recipes on www.astray.com

• I typed them all in

• Laziness is a virtue

• Line 2 is untrue

• DOS recipe program: MealMaster

• Easily parsable recipe files...

• So let’s find them with Google!

my $search = WWW::Search->new('Google', key => $key);
$search->native_query("mealmaster recipes");
my $count = 0;

while (my $result = $search->next_result()) {
 last if $count++ > 100; # limits!
 my $extor = HTML::SimpleLinkExtor->new();
 $extor->parse(get($result->url));
 foreach my $link ($extor->links) {
 next unless $link =~ /\.zip$/;
 my $uri = URI::WithBase->new($link, $result->url);
 print $uri->abs . "\n";
 }
}

Find recipes

Google cache

use Net::Google::Cache;
my $cache = Net::Google::Cache->new({
 key => $key
});
$cache->url("http://www.astray.com/");
print $cache->get();

Google spelling

• I have 100k recipes on www.astray.com

• You can search for recipes

• Apparently ~10% of all queries on search
engines are misspelled - more like 30%!

• Accurate spelling correction is tricky, so
exploit Google’s hard work with Net::
Google::Spelling

• Backup spelling correction (> API limit)

Net::Google::Spelling

use Net::Google::Spelling;
my $spelling = Net::Google::Spelling->new({
 key => $key
});
$spelling->phrase("steak bernayes recipe");
print $spelling->suggest()."\n";
steak bernaise recipe

Action shot

Google Maps

• Recently introduced

• Pretty maps (USA only)

• WebService::GoogleMaps does the nasty
calculations for us

• ... but we need latitude, longitude

WWW::Gazetteer

my $g = WWW::Gazetteer->new('heavensabove');
my $ftl = $g->find('Fort Lauderdale', 'US')->[0];
my($longitude, $latitude) = ($ftl->{longitude},
$ftl->{latitude});

Zooom

Waave

Yahoo

• Web search

• Image search

• Video search

• News search

• Local search

• Spell

• Related, Y!Q...

Recipe news

• I have a lot of recipes

• What distinctive service do they have?

• Aha, news!

Recipe news

use Yahoo::Search AppId => 'AcmeNews';

my @links = Yahoo::Search->Results(
 News => 'recipes',
 Sort => 'date',
);

foreach my $link (@links) {
 print $link->Title . " (" .
 $link->SourceName . ")\n";
}

Recipe news output

Authentically Sichuanese A pair of mainland chefs showcase the
sophisticated cuisine of southwestern China (Bangkok Post)
Bowling-alley romance, British sitcom inspire diners (Pioneer Press)
SILVIA DODSON, ST. CLEMENT SHORTCAKE (Tampa Bay's 10)
‘Nasi briyani’ Johor style (@Metro KL)
Family Resource Fair scheduled for Saturday (Albany Democrat-
Herald)
In the Raw: Cook Without Your Oven (ThirdAge)
1. Embarrass Yourself (ThirdAge)
[Dining Index | North Bay | Metroactive Home | Archives] (Metro
Santa Cruz)
Zeslij swiathose swoja: Send your light upon us (Canyon Courier)
Eat to Your Heart's Content (Le Mars Daily Sentinel)

Yahoo limits

• No API key needed

• 5,000 queries per day per IP

Amazon

• E-Commerce Service

• Alexa Web Information Service

• Simple Queue Service

E-Commerce Service

• Detailed product information on all
Amazon.com products

• Access to Amazon.com product images

• All customer reviews associated with a
product

• Extended search

• Remote shopping cart

E-Commerce Service

• Amazon wish list search

• Precise response groups

• Multi-operation and batch interfaces

• Detailed error messages

• Built-in help functionality

E-Commerce Service

• CPAN modules:

• Net::Amazon

Find me a recipe book

• So I have lots of recipes

• Some of them list an ISBN

• Some of them list a book (freeform)

• I’d like to make $$$$ from Amazon
Associates

Find me a cookbook

my $ua = Net::Amazon->new(token => $AMAZON, cache => $cache,
 strict => 1, max_pages => 1);
my $response = $amazon->search(
 blended => $source, # title or ISBN
);
if ($response->is_success()) {
 my @properties = grep { $_->Catalog eq 'Book' }
 $response->properties;
 my $first = $properties[0];
 return unless $first;
 my @nodes = $first->browse_nodes;
 my $nodes = "@nodes";
 return unless $nodes =~ /(cooking|cookbooks|food|gourmet)/i;
 my $asin = $first->Asin;
 return $asin;
}

Cookbook in action

Alexa Web Information
Service

• URL information

• Browse category

• Web search

• Crawl meta data

• Web Map

Alexa Web Information
Service

• CPAN module:

• none!

• wait, that was accurate 12 hours ago

• Net::Amazon::AWIS

• No, I can’t find a good use for it on my
website either...

Simple Queue Service

• Basic queue operations

• Specifically designed for distribution
applications

• Implemented to the highest standards for
performance and reliability

Simple Queue Service

• CPAN module:

• Net::Amazon::SimpleQueue

Simple Queue Service

my $sq = Net::Amazon::SimpleQueue->new($sub_id);
my $queue_id = $sq->create_queue(
 name => $queue_name);
$sq->enqueue(
 name => $queue_name,
 body => "here is the actual data”);
my $entry = $sq->read(name => $queue_name);
$sq->dequeue(
 name => $queue_name,
 entry_id => $entry->{id});

Queues

• If I had a cluster of distributed machines, I
might use Amazon::Simple::Queue

• Donations welcome

More Amazon modules

• CPAN modules:

• Business::Associates

• WWW::Amazon::Wishlist

• WWW::Scraper::ISBN::
AmazonUK_Driver

• WWW::Scraper::ISBN::
AmazonUS_Driver

Amazon limits

• No more than one query per second

Links

• http://www.google.com/apis/

• http://developer.yahoo.net/

• http://www.amazon.com/gp/aws/
landing.html

Summary

• For my website, I exploit enterprise web
services in Perl

• Perl makes it easy

Demo!

• Let’s show it all off!

